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This study is concerned with the equilibrium shapes of orthotropic, elliptical plates and
shells deforming elastically without initial stresses. The aim is to explore potential bistable
configurations and their dependencies on material parameters and initial shape for
elucidating novel morphing structures. A strain energy formulation gives way to a compact
set of governing equations of deformation, which can be solved in closed form for some
isotropic and orthotropic conditions. It is shown that bistability depends on the change in
Gaussian curvature of the shell, in particular, for initially untwisted shells, isotropy
precludes bistability, where there is negative initial Gaussian curvature, but orthotropic
materials yield bistability irrespective of the sign of the initial Gaussian curvature. This
improved range of performance stems from increasing the independent shear modulus,
which imparts sufficient torsional rigidity to stabilize against perturbations in the
deformed state. It is also shown that the range of bistable configurations for initially
twisted shells generally diminishes as the degree of twist increases.
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1. Introduction

Compared to conventional engineering structures, where sizeable deflexions
portend failure, metamorphosing or ‘morphing’ structures are designed to be
reconfigured elastically between stable and radically different states.Theyarebeing
proposed for novel, multi-functional systems, where appreciable departures from
the initial shape offer competitive advantages elsewhere. For example, fervent
research efforts are focusing on newaircraft concepts inwhich controlled distortions
of key aerodynamical surfaces tailor the flight envelope. Weiss (2003) describes
shape-shifting trailing edges that constantly re-adjust the cross-sectional profile of
wing for an optimal lift-to-drag ratio, reconfigurable engine nacelles for better
thermodynamical efficiency and flight range, and compliant wings for exacerbating
roll under torsion for greater agility during dog-fighting.

The design of morphing structures faces clear challenges in delivering the
required shape changes while maintaining strength, stiffness and stability.
A viable class of simple but effective structures seems to be thin-walled, bistable
shells with two separately curved configurations. This performance is wrought by
the aggregation and relief of stored strain energy under large deflexions, and for
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Table 1. Nomenclature.

a, b major and minor semi axes lengths of ellipse
Ex, Ey, G Young’s moduli and shear modulus
k1, k2, k3, k4 arbitrary constants of curvature
Mx, My, Mxy bending moments and twisting moment
t plate thickness
UB, US strain energy densities of bending and stretching. Dimensionless

�UZU$12ð1Kn2=bÞa3=Ept5b
x, y, z orthogonal coordinates within plate; z is normal to the middle surface
a dimensionless torsional rigidity equal to 2r(1Kn2/b)
b, r modular ratios, equal to Ey/Ex and G/Ex

Dg change in Gaussian curvature, kxkyKk2xyKkx0ky0Ck2xy0
ex, ey, gxy direct strains and shear strain
cx, cy, cxy changes in curvatures and twisting curvature, or ‘twist’
kx, ky, kxy absolute curvatures. An extra subscript, ‘0’, denotes initial value.

Dimensionless values are �kZka2=t
sx, sy, txy direct stresses and shear stress
nyx, nxy orthogonal Poisson’s ratios
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continuous plates and shells without initial stresses, it can only be governed by
the initial shape of structure and the constitutive material behaviour, but in a
mutually inclusive way, e.g. bistable isotropic shells are doubly curved
(Mansfield 1965), whereas simpler cylindrically curved strips are bistable when
made from anisotropic materials such as composites (Guest & Pellegrino 2006).
More specifically, material anisotropy distorts the symmetry of stored energy
under uniform deformation defined by a particular direction within the shell,
thereby seeding preferential directions for minimal stored energy. The initial
shape determines whether there is a change in the Gaussian curvature (Calladine
1983), which further develops the interaction between bending and stretching in
the nonlinear regime. To date, the combination of the influences of material and
shape has not been explored in a systematic way, for it may reveal new bistable
forms for augmenting the design and capabilities of novel morphing structures,
which is the subject of this paper.

For solutions to become tractable within a large deflexion formulation, two
compromises are introduced: the material behaviour is chosen to be orthotropic
and the initial shape is uniformly curved. When mechanical loads are absent, the
second compromise obviates a similar uniformity of deformed curvatures except
for regions close to any free edges, where a boundary layer of non-uniform
deformation must develop (Galletly & Guest 2004). The width of this layer
diminishes when the thickness variation near the free edge vanishes. Although no
such condition is prescribed here, where a constant thickness greatly simplifies
the calculation detail, the shell is assumed to be very thin, so that the boundary-
layer width and hence its effect diminishes in comparison to the bulk of the shell,
and its contribution to the formulation can be discounted without detriment to
the general outcome. The outline of this paper is described subsequently.

Section 2 obtains the large deflexion behaviour of a shell with an elliptical
planform, which is chosen for its mathematical expediency and describing either
strips or discs by varying its semi-axes. Traditional formulations simultaneously
Proc. R. Soc. A (2007)



69Morphing bistable orthotropic shells
solve a pair of nonlinear governing partial differential equations (Mansfield 1989;
Weaver 2006) derived from general equilibrium and compatibility considerations
subject to boundary conditions; but the assumption of uniform curvatures a
priori permits a simpler scheme, as the change in Gaussian curvature is known,
which prescribes the variation of in-plane strains and stresses. The total strain
energy stored in the shell can then be determined straightforwardly, whose
stationary values yield equilibrium configurations, and further calculus
procedures help to ascribe the character of their stability. Note that the
properties of the equilibria do not depend on any enabling agency of deformation
under conservative behaviour and the formulation discounts any external effort,
although it would be needed to elucidate the corresponding equilibrium path,
if required.

Section 3 first determines the influence of the initial shape under isotropic
behaviour. It repeats some of the work of Mansfield (1965), but it introduces an
important finding, namely, the influence of the change in Gaussian curvature upon
the stability of solution. In addition, the relatively simpler governing equations
reveal key solutions in closed form, and this procedure is repeated for a special
orthotropic case, where the bending response is isotropic to highlight the stabilizing
effects of an increased torsional rigidity under a larger, independent shearmodulus.
The section then considers two numerical examples, where feasible bistable
geometries are established for a practical composite material and a hypothetical
material, where there is a constraint in the initial shape. General conclusions are
drawn together in §4. For a detailed list of all nomenclature see table 1.
2. Constitutive behaviour and formulation

The symbols for direct stress and strain are s and e, and a single subscript
denotes a coordinate direction. For orthotropic material behaviour, the
constitutive relationships for plane stress behaviour can be written as

ex Z
sx

Ex

K
nyxsy

Ey

; ey Z
sy

Ey

K
nxysx

Ex

; gxy Z
txy

G
; ð2:1Þ

where Ex and Ey are the Young’s moduli in the directions of orthogonal
coordinates, x and y, respectively, and G is an independent shear modulus
relating the shear stress, txy, to the shear strain, gxy. The reciprocal theorem ties
together the orthogonal Poisson’s ratios, nyx and nxy, such that

nxy

Ex

Z
nyx

Ey

: ð2:2Þ

For straightforwardness, new relationships are defined in terms of constants and
Greek symbols,

Ex ZE; Ey ZbEx ; G Z rEx ; nyx Z n; nxy Z
n

b
; ð2:3Þ

where for isotropy, bZ1 and rZ1/2(1Cn) for a homogenous material. The
original strains are written as

ex Z
sx

E
K

nsy

bE
; ey ZK

nsx

bE
C

sy

bE
; gxy Z

txy

rE
; ð2:4Þ
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or, if the expressions are solved explicitly for stresses,

sx Z
E

ð1Kn2=bÞ ½ex Cney�; sy Z
Eb

ð1Kn2=bÞ ey C
nex

b

� �
; txy ZErgxy: ð2:5Þ

The governing equations of deformation for large deflexion orthotropic
behaviour are derived using a strain energy formulation based on familiar but
general components of bending and stretching strain energy densities per unit
surface area of plate. Specifically, the assumption of uniform curving defines the
changes in curvature and hence the change in Gaussian curvature. The in-plane
middle surface strains (and stresses) can be determined from the requirement of
overall compatibility, and an intermediate step uses an Airy stress function to
ensure that the in-plane boundary conditions are properly upheld. The final set of
governing equations follows from elementary calculus operations.

(a ) Strain energy densities

The simplest approach considers the work done by the stresses, equation (2.5),
on a deformed infinitesimal element of plate, first, when they are constant
through the thickness, t, of plate and second, when they vary linearly across the
depth but symmetrically about the middle surface, respectively, defining the
strain energy densities in stretching, US, and in bending, UB, for a general linear
variation (Calladine 1983). For the first case

US Z
t

2
½sxex Csyey Ctxygxy�Z

t

2E
s2x C

s2y

b
K

2nsxsy
b

C
t2xy

r

� �
; ð2:6Þ

after substituting for equation (2.4). The second case is handled more efficiently
by introducing bending stress resultants, M, such that

Mx Z

ðt=2
Kt=2

sxz dz; My Z

ðt=2
Kt=2

syz dz; Mxy Z

ðt=2
Kt=2

txyz dz: ð2:7Þ

The corresponding changes in curvature of the middle surface are cx, cy and cxy,
the latter being the engineering twisting curvature, or simply ‘twist’, defined
strictly within

ex Z zcx ; ey Z zcy; gxy Z 2zcxy; ð2:8Þ
under Kirchhoff’s hypothesis. Inserting the above into equation (2.5), and back
into equation (2.7), and performing the integration across the thickness in the
normal direction, z, the set of generalized Hooke’s laws for orthotropic bending is
obtained as

Mx Z
Et3

12ð1Kn2=bÞ ½cx Cncy�; My Z
Et3b

12ð1Kn2=bÞ cy C
ncx

b

� �
; Mxy Z

Et3r

6
cxy:

ð2:9Þ
Each of these moments performs work as the faces of the deforming element of
plate rotate, and UB can be calculated precisely from

UB Z
1

2
½Mxcx CMycy C2Mxycxy�

Z
Et3

24ð1Kn2=bÞ c2
x Cbc2

y C2ncxcy C4ð1Kn2=bÞrc2
xy

� �
; ð2:10Þ

when Mx, My and Mxy are substituted from equation (2.9).
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71Morphing bistable orthotropic shells
(b ) Overall compatibility and Airy stress function

Calladine (1983) gives the relationship between the change in Gaussian
curvature, Dg, of the plate and the in-plane strains as

KDg Z
v2ey

vx2
C

v2ex

vy2
K

v2gxy

vxvy
; ð2:11Þ

with Dg equal to kxkyKk2xyKkx0ky0Ck2xy0 by definition, where the final
curvatures are kx, ky and kxy, and the initial curvatures are the same, but
denoted by an extra subscript of ‘0’.

According to Mansfield (1989), the equilibrium condition for an element of
plate without body forces can be expressed in terms of an Airy stress function, F,
such that

sx Z
v2F

vy2
; sy Z

v2F

vx2
; txy ZK

v2F

vxvy
: ð2:12Þ

Substituting into equation (2.4), the strains in equation (2.11) are replaced by
F, which can be differentiated and tidied, giving way to an amended
compatibility statement

KEDg Z
1

b

v4F

vx4
K

v4F

vx2vy2
2n

b
K

1

r

� �
C

v4F

vy4
: ð2:13Þ

(c ) Governing equations of deformation

Solutions for F can be determined uniquely for the elliptical planform, when
the major and minor semi-axes, of lengths a and b, are parallel to the same
orthogonal coordinates, x and y. The initial shape of the shell is described by the
set of distortions, w0, of the middle surface normal to the xy plane, where
Kw0Zkx0x

2=2Cky0y
2=2Ckxy0xy. After deformation, the current transverse

displacements are KwZkxx
2=2Ckyy

2=2Ckxyxy, and the quadratic variations
of w and w0 ensure that the changes in curvature are independent of x and y. The
change in Gaussian curvature is also constant and hence equation (2.13) is
satisfied by selecting a general fourth-order polynomial for F. Following up, the
stresses vary quadratically from equation (2.12), and it can be verified that the
following expressions

sx Z S x2 C
3a2

b2
y2Ka2

� �
; sy ZS

3b2

a2
x2Cy2Kb2

� �
; txy ZK2Sxy; ð2:14Þ

uphold the boundary condition of zero force and shear force everywhere normal
and tangential to the free edge while ensuring a symmetry of solution about the
x- and y-axes. After substituting into the compatibility condition, equation
(2.13), the constant, S, is calculated to be

S ZK
Ea2b2Dg

j
; ð2:15Þ

with the dummy variable

jZ 6 a4 C
b4

b
C

a2b2

3

1

r
K

2n

b

� �� �
: ð2:16Þ
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The information for the strain energy densities is now complete, enabling
their integration over the elliptical planform to yield the total strain energy, U.
A convenient dimensionless form, �U , derives from the groupings, �UZU$
12ð1Kn2=bÞa3=Ept5b, �kZk$a2=t and fZð1Kn2=bÞb4=j, resulting in

�U Z
f

2
�kx�kyK�k2xyK�kx0�ky0 C �k2xy0
� �2

C
1

2
ð�kxK�kx0Þ2 Cbð�kyK�ky0Þ2
�

C2nð�kxK�kx0Þð�kyK�ky0ÞC4ð1Kn2=bÞrð�kxyK�kxy0Þ2
�
: ð2:17Þ

In the absence of externally applied loads, there are no other terms. Deformed,
statical equilibrium configurations are therefore given by differentiating �U with
respect to �kx , �ky and �kxy, and setting equal to zero, to reveal

�kx C �kymK�kx0Kn�ky0 Z 0; b�ky C �kxmKb�ky0Kn�kx0 Z 0;

ðaKmCnÞ�kxyKa�kxy0 Z 0; ð2:18Þ

where the extra terms, a and m, have been introduced for compactness, such that

aZ 2rð1Kn2=bÞ; ð2:19Þ
and

mZ nCf �kx�kyK�k2xyK�kx0�ky0C �k2xy0
� �

: ð2:20Þ

Note that a physically refers to the torsional rigidity of the shell with respect to
the x- and y-axes; it is a dimensionless factor, which multiplies the flexural
rigidity, Et3/12(1Kn2/b), in the x-direction. Equations (2.18) and (2.20) are
four equations in the unknowns �kx , �ky, �kxy and m. By solving each of the
curvatures explicitly,

�kx Z
�kx0ðbKmnÞC�ky0bðnKmÞ

bKm2
; �ky Z

�kx0ðnKmÞC�ky0ðbKmnÞ
bKm2

; �kxy Z
a�kxy0

aKmCn
:

ð2:21Þ

Thevalues ofm are obtainedby substituting the above expressions back into equation
(2.20), and solving the roots of the corresponding characteristic equation

ðnKmÞ f ðaKmCnÞ2 ðbKmnÞ �k2x0Cb�k2y0
� �

C�kx0�ky0ðbnK3mbCm2nCm3Þ
	 
�	

C�k2xy0ðbKm2Þ2ð2aKmCnÞ
�
CðbKm2Þ2ðaKmCnÞ2gZ0;

ð2:22Þ

in terms of known values of �kx0, �ky0, �kxy0, b and r (and f and a). The outside
factor, nKm, simply confirms the initial state, �kxZ�kx0, etc. but the remaining six
roots present deformed equilibrium states. The stability of solutions can be
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73Morphing bistable orthotropic shells
assessed by confirming the positive definiteness of the generalized stiffness matrix

v2 �U=v�k2x v2 �U=v�kxv�ky v2 �U=v�kxv�kxy

v2 �U=v�kyv�kx v2 �U=v�k2y v2 �U=v�kyv�kxy

v2 �U=v�kxyv�kx v2 �U=v�kxyv�ky v2 �U=v�k2xy

2
664

3
775

Z

1Cf�k2y mCf�ky�kx K2f�ky�kxy

mCf�kx�ky bCf�k2x K2f�kx�kxy

K2f�kxy�ky K2f�kxy�kx 2aK2fD�gC4f�k2xy

2
664

3
775; ð2:23Þ

where the elements in the right matrix follow by further differentiating �U . Note
that D�g is the change in dimensionless Gaussian curvature using �k terms.

This matrix follows from the second-order term in the Taylor expansion of the
generalized energy expression (Guest & Pellegrino 2006), and is real and
symmetrical. One condition for positive definiteness requires that all its
eigenvalues are positive and real, and can be computed straightforwardly using
a software package such as MATLAB (MathWorks 2000).
3. Bistable configurations

The roots of the characteristic equation (2.22) can be extracted in closed form for
specific initial conditions, most easily for isotropic behaviour. The results are
similar to those found by Mansfield (1965), who deals with plates of tapering
thickness, but one difference is the value taken by f, which depends on the
planform and thickness variation of the shell. For orthotropic behaviour, the
roots do not oblige so easily and call for a numerical solution. Invariably, some of
the roots are not real and physically impossible. There are also repeated roots,
which detract further from the total number of stable shapes. In all the cases
tested, it seems that only bistability is accorded, where one of the deformed
configurations is stable. Nonetheless, given the assumption of uniform deformed
curvatures, the corresponding bistable shape of structure is straightforward;
and for cases that require a numerical solution, it is more instructive and
visually simpler to present solution information concomitant to the range of
initial shapes.
(a ) Isotropic behaviour

Isotropic material behaviour is defined by setting bZ1 and rZ1/2(1Cn),
returning aZ1Kn, and the deformed curvatures in equation (2.21) are
marginally simplified to

�kx Z
�kx0ð1KmnÞC�ky0ðnKmÞ

1Km2
; �ky Z

�kx0ðnKmÞC�ky0ð1KmnÞ
1Km2

; �kxy Z
ð1KnÞ�kxy0

1Km
;

ð3:1Þ
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and ignoring the initializing factor nKm, the characteristic equation, equation
(2.22), becomes

f ð�kx0C�ky0Þ2ð1KmnÞCð�kx0�ky0K�k2xy0Þ½nK2Cmð2nK3ÞCnm2Cm3�
� �	

Cð1Km2Þ2


ð1KmÞ2 Z0: ð3:2Þ

The curvatures are undefined for the repeated roots, mZ1, and the behaviour is
governed by solutions to the fourth-order polynomial inside curly brackets.
(i) Zero twist behaviour

For the initially untwisted case, the polynomial is factorized more simply
when �kx0Z �ky0Zk1 or �kx0ZK�ky0Zk2 for shells with equal (spherical) and
opposite (saddle-shaped) principal curvatures, respectively

fk21ð2CnCmÞCð1CmÞ2
	 


ð1KmÞ2 Z 0;

fk22ð2KnKmÞCð1KmÞ2
	 


ð1CmÞ2 Z 0: ð3:3Þ
The unity factors do not define solutions, but the roots of the remaining
quadratics ultimately yield a pair of real solutions conforming to inversions of the
initial shapes, with new principal curvatures equal to

�kx Z �ky ZK
k1
2

1G 1K4ð1CnÞ=fk21
� �0:5h i

;

�kx ZK�ky ZK
k 2

2
1G 1K4ð1KnÞ=fk 2

2

� �0:5h i
; ð3:4Þ

provided the constants k1 and k2 satisfy

k21O4ð1CnÞ=f; k 2
2O4ð1KnÞ=f: ð3:5Þ

The symmetry between the solutions is fortuitous, but the stability performances
are somewhat different. Since there is no deformed twist from setting �kxy0Z0, the
generalized stiffness matrix from equation (2.23) can be reduced to

A B 0

B A 0

0 0 C

2
64

3
750l1 ZC ; l2 ZACB; l3 ZAKB; ð3:6Þ

where l1, l2 and l3 are the eigenvalues with AZ1Cf�k2y, BZmCf�ky�kx and
CZ2aK2fD�g. If the dummy parameters, h and x, are introduced such that

hZ
fk21

4ð1CnÞ ;
fk22

4ð1KnÞ ; xZ 1G

ffiffiffiffiffiffiffiffiffiffiffi
1K

1

h

s
; ð3:7Þ

then real solutions are defined by hR1 and the eigenvalues can be written
succinctly (see table 2).

In both cases, the solutions 0!x!1 proffer negative eigenvalues irrespective of
h, and the stiffness matrix is not positive definite, suggesting that the equilibria
are unstable. When 1!x!2, the magnitudes of the deformed curvatures are the
Proc. R. Soc. A (2007)



Table 2. Variation of the eigenvalues of stiffnessmatrix, equation (2.23), for the indicated initial shapes,
�kx0 and �ky0, under isotropic conditions. There is no initial twist, and h and x are defined within equation
(3.7). For the larger value of x, the sign of the eigenvalues is indicated inside parentheses.

eigenvalue �kx0Z �ky0Zk1 �kx0ZK�ky0Zk2

l1ZC 2[1KnKh(1Cn)(x2K4)] (O0) 2(1Kn)[1Ch(x2K4)] (!0)
l2ZACB (1Cn)[1Ch(3x2K4)] (O0) 1CnCh(1Kn)(4Kx2) (O0)
l3ZAKB 1KnKh(1Cn)(x2K4) (O0) (1Kn)[1Ch(3x2K4)] (O0)
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largest, and the eigenvalue performances are tabulated inside brackets in table 2.
The equally curved case has a positive definite stiffness matrix, asserting
bistability; however, for the oppositely curved shell, there is a single negative
eigenvalue and hence no bistability. A separate study has confirmed that the
latter case is, in fact, metastable, as the strain energy contours describe a saddle-
like landscape around the equilibrium solution. In particular, the solution is
unstable in the direction of twist, but stable for perturbations in either �kx or �ky.
Interestingly, Mansfield (1965) suggests bistability for the latter, but without
formal substantiation.

The difference in stability is underpinned by the physical interpretation
of the responsible eigenvalue, l1. From equation (2.23), l1 is equal to
v2 �U=v�k2xyZ2aK2fD�g, when there is no deformed twist. This expression is
akin to the dimensionless torsional rigidity of the shell. Recall from equation
(2.19) that a is the linear, or small-deflexion, component and fD�g accounts for
the influence of large deflexions. Using the solutions from equation (3.4), the
change in Gaussian curvature is positive and sufficiently large to render the
oppositely curved case with negative torsional stiffness overall, and any twisting
perturbation of the second equilibrium position simply destabilizes the shape,
restoring the deflexions to zero. In the equally curved case, D�g is negative, but it
contributes positively to the torsional stiffness. Insight is also gleaned from the
in-plane stresses via equation (2.14), where the radial pattern of direct
circumferential stress varies from compressive in the centre to tensile on the
free edge. Thus, a hoop-wise tension forms over the bulk of the shell, which helps
to reinforce the deformed shape against reversion. For the oppositely curved
case, there is a circumferential band of compression that presumably augments
instability, but it is less straightforward to visualize.

When �kx0 and �ky0 are generally different from each other, equation (3.2) has no
obvious factors and numerical techniques are needed.
(ii) Zero initial Gaussian curvature

Setting �kx0�ky0K�k2xy0Z0, the fourth-order characteristic polynomial, equation
(3.2), becomes

fð�kx0C �ky0Þ2ð1KmnÞCð1Km2Þ2 Z 0; ð3:8Þ
whose roots can be determined in closed from, but not compactly for insight into
stability. Instead, another approach advocated by Mansfield considers the
magnitude of the polynomial’s discriminant, which depends on the product of
the differences between the roots. When the discriminant is negative, some of
Proc. R. Soc. A (2007)
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the roots are certainly real, indicating possible bistable behaviour. Although
determining the roots or discriminant of low-order polynomials poses fewnumerical
problems, the latter has amore succinct closed form.Writing the above equation as

m4Ca 2m
2Ca3mCa4 Z 0; a2 ZK2; a3 ZKnfð�kx0 C �ky0Þ2;

a4 Z 1Cfð�kx0 C �ky0Þ2; ð3:9Þ

its discriminant is equal to Weisstein (2006)

K4a23a
3
2K27a 4

3 C256a34 Ca4ð16a 4
2 C144a 2

3a 2ÞK128a24a
2
2; ð3:10Þ

and specifically here to

256f2ð�kx0C �ky0Þ4 1Kn2 Cfð�kx0 C �ky0Þ2 1K
9n2

8

� �
Kf2ð�kx0 C �ky0Þ4

27n4

256

� �
: ð3:11Þ

When n takes values around 1/3 for engineering materials, it may be verified that
the discriminant is positive provided fð�kx0C �ky0Þ2!673, which, in reality, is not
upheld only for highly curved strips. The behaviour of shallow strips complies
with a positive discriminant, and the roots of equation (3.8) are imaginary
resulting in no bistability. This result applies equally to singly curved strips,
which have no initial Gaussian curvature, and they too are never bistable. Guest &
Pellegrino (2006) also establish this result under their strict assumption of
inextensional behaviour.
(iii) General initial distortions

For any initial shape, the previous discriminant approach can be employed,
but it does not quantify the stability of shape. Algorithmically, it can cause
difficulties in view of the real behaviour. Repeated factors in the characteristic
equation register zero discriminant, even though real roots and possibly bistable
solutions persist. Therefore, the roots of equation (3.2) are solved numerically,
the deformed curvatures are computed, and the elements of the stiffness matrix
in equation (2.23) are determined for assessing its positive definiteness. For
example, figure 1 shows that for zero initial twist, bistable configurations exist,
provided the combination of �kx0 and �ky0 values is large enough and of the same
sign. The earlier closed-form predictions, §3a(i), confirm solutions along the lines
�ky0ZG�kx0. The performances under increasing aspect ratio are resolved over the
sub-figures up to a value of b/aZ100, which approximates the response of a thin,
but doubly curved narrow strip. In all cases, there is little difference in the overall
form, although the bistable regions expand asymptotically towards the origin
and symmetrically about the line �kx0Z �ky0.

Formal solutions for the effects of initial twist can also be computed, but are
not needed in view of the following argument. Using a Mohr’s circle of twist
versus curvature (Calladine 1983) and equations (3.1), the following invariant
relationship can be proven

�kxK�ky
�kxy

Z
�kx0K�ky0
�kxy0

; ð3:12Þ
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Figure 1. Regions of feasible bistable geometries are shaded grey for isotropic (nZ0.3) elliptical
shells under increasing aspect ratio, b/a, with �kxy0Z0. Unshaded regions are configurations which
are not bistable.
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which is also confirmed by Mansfield (1965). This result asserts that the axes of
principal curvature, before and after deformation, are coincident. Any case with
initial twist can be transformed to principal axes, but crucially, the initial values of
average curvature and Gaussian curvature are the same as �kx0C �ky0 and
�kx0�ky0K�k2xy0, so that the roots in equation (3.2) are unaffected by the
transformation. Thus, the results of cases without twist—as in figure 1—can be
transcribed directly to cases, which include twist. Moreover, for shells with
negative initial Gaussian curvature, adding twist simply retains principal
curvatures of opposite senses, and no improvement towards bistability is
obtained. For positive Gaussian curvature, the principal curvatures also diverge
upon adding twist, which may result in a change in sign of the Gaussian curvature,
and the effects of twist, generally speaking, diminish bistable performance.
Correspondingly, the bistable boundaries in figure 1 move progressively further
from the origin under increasing initial twist.

Isotropy guarantees the invariance of behaviour imbued in equation (3.12), but for
orthotropic behaviour, all cases involving initial twist must be reviewed separately.

(b ) Orthotropic behaviour

It is worth commenting upon the deformed curvatures in equation (2.21)
without a formal solution. A singly curved shell, where �kx0Z0 or �ky0Z0, has a
second, orthogonally curved configuration only if m takes the value b/n, resulting
in the non-zero curvature, n!ð�kx0; �ky0Þ. However, this prospective solution is not a
viable root of the characteristic polynomial, equation (2.22), and a strip without
initial Gaussian curvature must stretch for bistability, where the new shape is
doubly curved. A second comment is that when mZaCn, then the deformed twist,
�kxy, is not defined by its expression inside equation (2.21), rather, it must be
calculated from m via equation (2.20). This is relevant, when �kxy0 is zero; the
characteristic equation has a repeated factor, (aCnKm)2, and the values of �kx0 and
�ky0 determine whether �kxy will be real.

(i) Direct stress ‘isotropy’

Closed-form solutions are available, when b is set equal to unity. Assuming
material homogeneity, this condition defines isotropic behaviour for direct
stresses and, consequently, no directional dependence of the flexural rigidities,
Proc. R. Soc. A (2007)



Table 3. Variation of the eigenvalues of stiffness matrix, equation (2.23), for the indicated initial
shapes under semi-orthotropic behaviour (bZ1, but as1Kn). h and x are defined within equation
(3.14).

eigenvalue �kxy0Zk3; �kx0Z �ky0Z0 �kx0ZK�ky0Zk4; �kxy0Z0

l1 2a[1Kh(4K3x2)] 2aK2(1Kn)h(4Kx2)
l2 1CnCah(4Kx2) 1CnCh(1Kn)(4Kx2)
l3 (1Kn)Kah(4Kx2) (1Kn)[1Kh(4K3x2)]
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but it allows freedom to proportion the effect of independent shear modulus, rE,
and the torsional rigidity of the shell. The two cases are defined by a state of pure
twist, �kxy0Zk3 and �kx0Z �ky0Z0, and by equal and opposite principal curvatures,
�kx0ZK�ky0Zk4 and �kxy0Z0. The characteristic polynomial, equation (2.22),
admits only soluble quadratic factors

fk23ð2aCnKmÞCðaCnKmÞ2 Z 00mZaCnC
fk23
2

1G 1K4a=fk23
� �0:5h i

;

fk24ð2KnKmÞCð1KmÞ2 Z 00mZ 1C
fk24
2

1G 1K4ð1KnÞ=fk24
� �0:5h i

: ð3:13Þ

The deformed curvatures are determined from equation (2.21), and the
eigenvalues, l1, l2 and l3, of the stiffness matrix, equation (2.23), can be written
in closed form using the dummy variables

hZ
fk23
4a

;
fk24

4ð1KnÞ ; xZ 1G

ffiffiffiffiffiffiffiffiffiffiffi
1K

1

h

s
; ð3:14Þ

where hR1 accords real solutions (see table 3).
When xZ1K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1K1=h

p
, the eigenvalue signs in both cases are not consistent,

and these cannot be bistable solutions. For the case of pure twist, l1 and l2 are
always positive, when x adopts the larger value, and l3O0 is assured, when
a!(1Kn)/3 for hR1. Similarly, for the oppositely curved case, l2O0 and l3O0,
but l1O0 only when aO3(1Kn). Either case can be bistable depending on the
value of a, but not together, and the deformed curvatures, without explicitly
stating them, give rise to an inversion of initial shape. In the isotropic case, a
cannot deviate from 1Kn, which lies outside both inequalities, and the unstable
regions for oppositely curved cases in figure 1 are again confirmed.

For the oppositely curved case, setting aO3(1Kn) for bistability has a direct
physical understanding based on the discussion of isotropy in §3a(i). The
eigenvalue, l1, here also equates to the large deflexion torsional stiffness, and the
linear component, a, is sufficiently large to nullify any reduction in the overall
rigidity foisted by a positive change in the Gaussian curvature during
deformation. However, a seemingly paradoxical feature stems from regarding
the twisted but bistable case (a!(1Kn)/3) as an initial shape with equal and
opposite principal curvatures along the directions defined by yZGx. As a
corollary to this case, the orientation of a fixed shape without axisymmetry with
Proc. R. Soc. A (2007)
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respect to the original orthotropic axes determines whether there can be
bistability. The issue is, however, simply resolved, when the equivalent
orthotropic properties associated with the orientation of shape are discerned.
For example, if the second coordinate axes, X and Y, are aligned to yZGx, then
separate Mohr’s circles of stress and strain admit the following relationships

sx Z
sX

2
C

sY

2
KtXY ; sy Z

sX

2
C

sY

2
CtXY ; txy Z

sXKsY

2
; ð3:15Þ

eX Z
ex

2
C

ey

2
C

gxy

2
; eY Z

ex

2
C

ey

2
K

gxy

2
; gXY Z exKey;

and the equivalent constitutive relationships are forged using equation (2.4),
where b is set to unity. The Young’s moduli are EXZEYZ �E, the Poisson’s
ratios are nYXZnXYZ�n and the independent shear modulus is �r �E. After
rearrangement, the terms are found to be

�E Z
2E

1KnCð1CnÞ=z ; �nZ
ð1CnÞ=zK1Cn

ð1CnÞ=zC1Kn
; �zZ

1

z
with

zZ 2rð1CnÞ; �zZ 2�rð1C�nÞ: ð3:16Þ
Importantly, z measures the performance of the modular ratio in shear, r,
relative to its isotropic value of 1/2(1Cn). The larger z becomes, the greater the
value of a, which affords bistability for the original oppositely curved case, where
�kx0Z �ky0s0 and �kxy0Z0. Correspondingly, �z defines the same performance for �r,
but for parameters evaluated in the XY coordinate system. Owing to the
reciprocal relationship with z, any augmentation of the original shear modulus
reduces the equivalent XY component. If so, then the stability of a shell curved in
opposite directions along yZGx (and therefore twisted w.r.t. x- and y-axes) is
governed by insufficient torsional rigidity, as it is less than the isotropic value,
and there can be no bistability.

Although the above relates to a specific example, the general implications
relate once again to the effects of adding twist to a principally curved shape,
where again, it can diminish bistable properties. This feature is pertinent in the
manufacture of composites, where asymmetry during curing and associated
thermal creep effects can introduce unexpected twist distortions, which may
detract from perceived bistability. These effects are demonstrated in §3b(ii) using
a practical example.
(ii) A numerical example

Ranges of bistable solutions are now obtained, in which the general sixth-order
characteristic polynomial, equation (2.22), is solved numerically excluding the
initializing factor mZn. For brevity, the values of the relative constants are taken
from a ‘composite’ material in Guest & Pellegrino (2006), which exhibits
orthotropic bending with bZ0.977, nZ0.766, and rZ1.965. Note that since b is
almost equal to unity, the closed-form procedures in §3b(i) offer complementary
insight. Of course, the results may not apply to composites that display
anisotropy, for example, anti-symmetrical fibre lay-ups, which are coupled
between twisting and stretching even though the uncoupled constitutive
Proc. R. Soc. A (2007)
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Figure 3. Regions of bistable configurations (shaded) for an orthotropic (bZ0.977, nZ0.766,
rZ1.965) elliptical shell (b/aZ2) with increasing initial twist, �kxy0. Unshaded regions are not
feasible solutions.
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Figure 2. Regions of bistable configurations (shaded) for an orthotropic (bZ0.977, nZ0.766, rZ1.965)
elliptical shell of increasing aspect ratio, b/a, with no initial twist. Unshaded regions are not
feasible solutions.
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behaviour is orthotropic, and symmetrical lay-ups, which proffer flexural and
twisting coupling out-of-plane alone. A formal study would be required to address
their behaviour, but the immediate aim here is to distill new features pertaining to
orthotropic behaviour alone.

For structures with zero initial twist and increasing aspect ratio, figure 2 shows
that bistability prevails for initial configurations, where the Gaussian curvature
is positive and negative, provided �kx0 and �ky0 are large enough in combination.
All bistable solutions are orthogonally curved without twist. A significant feature
is the fivefold increase in the modular ratio, r, which sufficiently elevates the
torsional rigidity, a. Note also that the feasible bistable regions intersect both
axes, �kx0Z0 and �ky0Z0, indicating that singly curved structures are bistable,
when j�kx0j or j�ky0j is roughly greater than 15. As b/a increases, this threshold
reduces but only marginally.

Supporting the discussion in §3b(i), figure 3 indicates that the action of adding
initial twist detracts from the bistability of doubly curved cases. As �kxy0
increases, the levels of initial curvature for bistable behaviour must also increase.
Commensurately, singly curved shells are no longer feasible configurations, when
�kxy0O5 for the chosen range of �kx0 and �ky0.
Proc. R. Soc. A (2007)
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(iii) A synthetic material solution

As a final theoretical exercise, let us consider the case where the material
properties can be proportioned systematically. In the following example, only the
b term is varied, with n and r taking isotropic values. This might be contrived in
practice by fixing transverse narrow strips of material periodically across the
surface of a thin metallic sheet. Furthermore, the initial Gaussian curvature is
arbitrarily set to zero, and the range of bistable solutions is displayed in figure 4.
For example, for the initial point, ð�kx0; �ky0ÞZð20; 5Þ, the bistable configuration
when bZ50 reveals �kxZ12:9; �kyZ4:63 and �kxyZK7:41, resulting in a small but
moderate increase in Gaussian curvature. The initial structure is cylindrically
curved along an axis between both semi-axes, and the new configuration is
almost cylindrical, but aligned on the opposite side of the x-axis.
4. Conclusions

This study has obtained the governing equations of large deflexion behaviour for
an elliptical shell with orthotropic material properties and uniform shape, in
order to investigate bistable behaviour without loads and pre-stress and its
dependent factors. The formulation is approximate, as it prescribes uniform
changes in curvature everywhere in the shell, including regions near to the free
edge, where a practical non-uniform boundary layer must develop. The
assumption of uniformity can be justified, however, if the shell is very thin.
Mansfield (1989) finds an approximate width of boundary layer equal to 0:77ffiffiffiffiffiffiffi
t=k

p
for a flat strip bent by end couples to a curvature, k. For the deformed

stable curvatures, this width commutes of the order of a few thickness, although
a more formal study is required. The assumption, nevertheless, leads to a
compact set of governing equations for determining new equilibrium states,
whose stability is assessed via the positive definitiveness of a generalized 3!3
stiffness matrix. In particular, this study has yielded the following novel results.
For isotropic material behaviour, a shell is only bistable when it possesses
sufficient positive Gaussian curvature. Other configurations are unstable or at
least metastable. Mansfield (1965) obtains an exact solution of behaviour using a
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precise tapering lenticular cross-section, and suggests that oppositely curved
shells are possibly bistable. The difference here is not due to the underlying
assumptions, as the governing equations in equations (2.18) and (2.22) can be
reduced to expressions identical to Mansfield, when b and r are set to isotropic
values of 1 and 1/2(1Cn). The make-up of the f term in equation (2.17) is
different, as it is essentially a shape factor; but it does not alter the character of
the general stability criteria, rather, it defines different thresholds at which
bistability is accorded. For orthotropic material, inextensional deformation
would appear not to be a viable transition mode between equilibria. Guest &
Pellegrino (2006) assume inextensional behaviour, as it best describes the
practical response of their rectangular strips, but limits the range of possible
geometrical configurations for study. Again, the difference here is due to the
number of deformed ‘output’ parameters. There are three output parameters in
�kx , �ky and �kxy, and the assumption of inextensional behaviour would constrain
them to each other by zero change in the Gaussian curvature. As a consequence
of a non-zero change, bistability also depends on the magnitudes of initial
curvatures, which govern the relative variation between the stretching and
bending strain energy densities, even for cylindrical shells with no initial
Gaussian curvature; neglecting extensional effects does not capture or reveal any
such threshold concerning the magnitude of initial shape. It has also been shown
that orthotropic shells can be bistable for configurations with negative as well as
positive initial Gaussian curvature. The reason bonds with the stability criteria,
where the likelihood of positive definiteness of the stiffness matrix is increased by
having a larger torsional rigidity, an effect physically tantamount for increasing
the material shear modulus. Careful attention must also be paid to the degree of
initial twist, as it has been demonstrated that depending on the choice of twist
axes, it can either complement or undermine the bistable capabilities of the shell.
In terms of practicability, the shell is invariably connected or fixed along its
boundary, thereby affecting the free-edge condition. Undoubtedly, its bistability
is also affected, but the precise changes in performance demand further scrutiny.
As a final comment, the original motivation for the synthesis exercise in §3b(iii)
was to expose multiply-stable configurations, given that the characteristic
polynomial in equation (2.22) can yield up to six possible roots. Even for a
wide range of orthotropic properties, only a single viable root for a deformed
shape was obtained, and further refinements to this aspect of study will require
the inclusion of material anisotropy and, possibly, non-uniform shapes.

K.A.S. is very grateful to his colleague, Dr S. D. Guest, for stimulating and enthusiastic
discussions. The considered comments of two anonymous referees were wholeheartedly received
and implemented.
References

Calladine, C. R. 1983 Theory of shell structures. Cambridge, UK: Cambridge University Press.
Galletly, D. A. & Guest, S. D. 2004 Bistable composite slit tubes. II. A shell model. Int. J. Solids

Struct. 41, 4503–4516. (doi:10.1016/j.ijsolstr.2004.02.037)
Guest, S. D. & Pellegrino, S. 2006 Analytical models for bistable cylindrical shells. Proc. R. Soc. A

462, 839–854. (doi:10.1098/rspa.2005.1598)
Mansfield, E. H. 1965 Bending, buckling and curling of a heated elliptical plate. Proc. R. Soc. A

288, 396.
Proc. R. Soc. A (2007)

http://dx.doi.org/doi:10.1016/j.ijsolstr.2004.02.037
http://dx.doi.org/doi:10.1098/rspa.2005.1598


83Morphing bistable orthotropic shells
Mansfield, E. H. 1989 The bending and stretching of plates. Cambridge, UK: Cambridge University
Press.

MathWorks. 2000 Matlab R12. Natick, MA 01760-2098,USA.
Weaver, P. M. 2006 Approximate analysis for buckling of compression loaded long rectangular

plates with flexural/twist anisotropy. Proc. R. Soc. A 462, 59–73. (doi:10.1098/rspa.2005.1552)
Weiss, P. 2003 Wings of change. Science News Online, December 2003.
Weisstein, E. W. 2006 Polynomial discriminant. Wolfram Web Resource http://mathworld.

wolfram.com/.
Proc. R. Soc. A (2007)

http://dx.doi.org/doi:10.1098/rspa.2005.1552
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/

	‘Morphing’ bistable orthotropic elliptical shallow shells
	Introduction
	Constitutive behaviour and formulation
	Strain energy densities
	Overall compatibility and Airy stress function
	Governing equations of deformation

	Bistable configurations
	Isotropic behaviour
	Orthotropic behaviour

	Conclusions
	K.A.S. is very grateful to his colleague, Dr S. D. Guest, for stimulating and enthusiastic discussions. The considered comments of two anonymous referees were wholeheartedly received and implemented.
	References


